Variability of Near-Field Ground Motion from Dynamic Earthquake Rupture Simulations
نویسندگان
چکیده
This study investigates near-field ground motion variability due to dynamic rupture models with heterogeneity in the initial shear stress. Ground velocity seismograms are synthesized by convolving the time histories of slip velocity obtained from spontaneous dynamic rupture models with Green’s functions of the medium calculated with a discrete wavenumber / finite element method. Peak ground velocity (PGV) estimated on the synthetics generally matches well with an empirically derived attenuation relation, whereas spectral acceleration (SA) only shows an acceptable match at periods longer than 1 s. Using the geometric mean to average the two orthogonal components leads to a systematic bias for the synthetics, in particular at the stations closest to the fault. This bias is avoided by using measures of ground motion that are independent of the sensor orientation. The contribution from stress heterogeneity to the overall ground motion variability is found to be strongest close to the fault and in the backward directivity region of unilaterally propagating ruptures. In general, the intra-event variability originating from the radiation pattern and the effect of directivity is on the same order or larger than the inter-event variability. The inter-event ground-motion variability itself is dominated by the hypocenter-station configuration and is influenced only to a lesser extent by the differences in the dynamic rupture process due to the stress heterogeneity. In our modeling approach the hypocenter location is not picked arbitrarily, but is determined to be mechanically consistent with the stress heterogeneity through a procedure emulating tectonic stress loading of the fault and nucleation. Compared to the peak ground motion recorded during the 2004 Parkfield, California earthquake our simulated seismograms show enhanced spatial correlation which may be attributed to the simplicity of the assumed crustal model or to an incomplete representation of the spatial heterogeneity of dynamic rupture parameters. Nevertheless, the intraevent PGV variability in the near-fault region determined for the Parkfield dataset is of the same order of magnitude as for our simulations.
منابع مشابه
Seismic Behavior of Jacket Offshore Platform Subjected to Near and Far Field Ground Motions
Offshore structures such as jacket platforms have to inevitably be designed against sever environmental actions. In seismically active areas these structures also become susceptible to earthquake excitations. Strong ground motions recorded in recent earthquakes, including the 1995 Kobe, Japan, 1999 Chi-chi, Taiwan and 1999 Kocaeli, Turkey earthquakes, revealed that the dynamic motions in nea...
متن کاملFrontiers in Source Modeling for Near-source Ground- Motion Prediction
Accurate prediction of the intensity and variability of strong ground motions for future large earthquakes depends on our ability to simulate realistic earthquake source models. While there has been considerable progress in characterizing the complexity of earthquake ruptures, recent devastating earthquakes have exhibited rather unexpected behavior. Moderate-size events occurred with surprising...
متن کاملSeismological asperities from the point of view of dynamic rupture modeling: the 2007 Mw6.6 Chuetsu-Oki, Japan, earthquake
We study the ground motion simulations based on three finite-source models for the 2007 Mw6.6 Niigata Chuetsu-oki, Japan, earthquake in order to discuss the performance of the input ground motion estimations for the near-field seismic hazard analysis. The three models include a kinematic source inverted from the regional accelerations, a dynamic source on a planar fault with three asperities in...
متن کاملA Strong Ground Motion Catalogue of Selected Records for Shallow Crustal, Near Field Earthquakes in Iran
Understanding strong ground motions in the near-fault areas is important for seismic risk assessment in densely populated areas. In the past, lack of information on strong ground motion for large and moderate earthquakes led to the use of mainly far field large and moderate earthquake records in equations for calculation of the strong ground motion parameters. In this article, we collected and ...
متن کاملSimulation of fault dynamic rupture and near-field strong motion
Dynamic rupture process of earthquake fault and its near-field strong ground motions are simulated by time-space-decoupled, explicit finite element method with multi-transmitting formula (MTF) of artificial boundary in this paper. This decoupled, explicit method has advantage to easily incorporate into time-step simulation of dynamic rupture process on earthquake fault, as well as wave motions....
متن کامل